
Eur. Phys. J. D 46, 395–406 (2008)
DOI: 10.1140/epjd/e2008-00002-x THE EUROPEAN

PHYSICAL JOURNAL D

On the optimality of individual entangling-probe attacks
against BB84 quantum key distribution

I.M. Herbauts1,a, S. Bettelli2, H. Hübel1, and M. Peev2
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Abstract. Some MIT researchers [Phys. Rev. A 75, 042327 (2007)] have recently claimed that their im-
plementation of the Slutsky-Brandt attack [Phys. Rev. A 57, 2383 (1998); Phys. Rev. A 71, 042312
(2005)] to the BB84 quantum-key-distribution (QKD) protocol puts the security of this protocol “to
the test” by simulating “the most powerful individual-photon attack” [Phys. Rev. A 73, 012315 (2006)].
A related unfortunate news feature by a scientific journal [G. Brumfiel, Quantum cryptography is hacked,
News @ Nature (april 2007); Nature 447, 372 (2007)] has spurred some concern in the QKD community
and among the general public by misinterpreting the implications of this work. The present article proves
the existence of a stronger individual attack on QKD protocols with encrypted error correction, for which
tight bounds are shown, and clarifies why the claims of the news feature incorrectly suggest a contradiction
with the established “old-style” theory of BB84 individual attacks. The full implementation of a quantum
cryptographic protocol includes a reconciliation and a privacy-amplification stage, whose choice alters in
general both the maximum extractable secret and the optimal eavesdropping attack. The authors of [Phys.
Rev. A 75, 042327 (2007)] are concerned only with the error-free part of the so-called sifted string, and do
not consider faulty bits, which, in the version of their protocol, are discarded. When using the provably su-
perior reconciliation approach of encrypted error correction (instead of error discard), the Slutsky-Brandt
attack is no more optimal and does not “threaten” the security bound derived by Lütkenhaus [Phys. Rev.
A 59, 3301 (1999)]. It is shown that the method of Slutsky and collaborators [Phys. Rev. A 57, 2383
(1998)] can be adapted to reconciliation with error correction, and that the optimal entangling probe can
be explicitly found. Moreover, this attack fills Lütkenhaus bound, proving that it is tight (a fact which was
not previously known).

PACS. 03.67.-a Quantum information – 03.67.Dd Quantum cryptography and communication security

1 Introduction

Quantum cryptography, or, more properly, quantum key
distribution (QKD) is a discipline investigating techniques
to grow, out of a common secret key, a larger key between
two remote parties (Alice and Bob) linked by a quantum
and a classical communication channel. The generated key
can then be consumed to perform various classical crypto-
graphic tasks, such as encoding messages with a one-time
pad, but this is outside the scope of QKD. In the last
twenty years it has been shown that it is in principle pos-
sible to grow the secret despite the channels being under
the control of a non-disruptive attacker (Eve) subject only
to the laws of quantum mechanics, a task deemed impos-
sible in a completely classical setting; this ability stems
ultimately from the well-known tradeoff between acquired

a e-mail: isabelle.herbauts@univie.ac.at

knowledge and state disturbance in a quantum measure-
ment. For an introduction to the subject, the interested
reader is pointed to some recent [1,2] and forthcoming [3]
reviews.

Broadly speaking, QKD protocols are based on Alice
transmitting quantum systems (usually photons) in ran-
domly selected states out of an alphabet of nonorthogonal
states. When Bob receives a system, he performs a mea-
surement to infer Alice’s signal; at the end of the quantum
exchange, the measurement settings (but not the results)
are publicly compared, and only results from compatible
measurements are retained (key sifting). In the sifted key,
measurement results are ideally deterministically corre-
lated, and any eavesdropping activity, which fundamen-
tally disturbs the exchanged systems, can be monitored.
The oldest and best studied QKD procedure, described
later on, is known under the name of Bennett-Brassard
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1984 (BB84) protocol [4]; other procedures, very similar
in spirit to BB84, are the entanglement-based Ekert [5]
and BBM92 [6] protocols.

QKD protocols so far devised consist of (a) a quantum
transmission followed by sifting over a public authenti-
cated classical channel, establishing a highly correlated
pair of keys at two remote sites; (b) a reconciliation pro-
cedure over the classical channel, allowing Alice and Bob
to agree on a shared identical random key; (c) a privacy-
amplification procedure over the classical channel which
ensures the security of a shortened key obtained from the
sifted key [7,8]. An additional necessary task for a com-
plete secure protocol is authentication, but this is of no
major consequence in the present analysis. Since the bits
of the raw key are all statistically independent, no infor-
mation about the sifted key can be extracted from the dis-
carded bits of the raw key, and therefore general security
analyses are concerned only with sifted keys. In both the
reconciliation and the privacy amplification phases, how-
ever, information is exchanged over the classical authen-
ticated channel, which can be perfectly spied, although
not modified, by Eve. This is to be taken into account,
in order that, after a sequence of appropriate procedures,
both Alice and Bob possess a copy of a key, about which
Eve knows only a negligible amount of information. The
security of a QKD protocol, therefore, relates directly to a
quantitative estimation of the amount of information po-
tentially acquired by Eve on the sifted and reconciled key.

The conditions for the security of full QKD protocols
have been extensively studied; in general, they depend on
the class of allowed attacks and on the degree of non-
ideality of the involved channels and cryptographic de-
vices. In this article only individual attacks, where Eve is
restricted to interact with and measure each transmitted
signal independently, are considered; moreover, the chan-
nel is assumed to be noisy and potentially leaking, but the
other devices are ideal and the quantum exchange is anal-
ysed only in the limit of very large keys. In this scenario,
security conditions are often expressed in the form of a
discarded fraction τ(e), that is the portion of the sifted
and reconciled key that is to be sacrificed in order to ob-
tain a final secret key. The discarded fraction is a function
of the probability that a bit at Alice’s site and the cor-
responding bit at Bob’s site differ after sifting, i.e., the
quantum-bit error rate (QBER) e; in the usual conserva-
tive approach, it must be assumed that errors in the sifted
key are entirely due to Eve.

Admittedly, this is not the state of the art in QKD
security proofs, since the most general class, where all sig-
nals are made to interact coherently with a very large
probe which is then optimally measured by Eve (coherent
attacks), has already been tackled [9,10]. Also, scenarios
where Alice and Bob’s devices are imperfect and poten-
tially manipulated by Eve have been considered and par-
tially analysed, as well as the case of finite lengths for the
exchanged keys. Finally, in recent years the definition it-
self of what is a secure final key has changed, due to the
introduction of the notion of composability. Literature on

these subjects is too large to be even cited here; the inter-
ested reader should refer to [3].

It must be remarked, however, that the case of ideal
individual attacks still bears some importance because (a)
proofs for realistic devices and finite key lengths are ulti-
mately based on proofs for ideal ones; (b) security bounds
for individual attacks, although conceptually very differ-
ent, give results rather similar to the case of coherent at-
tacks, which is a convincing argument about the effec-
tiveness of eavesdropping strategies for those researchers
that see coherent attacks as technologically unfeasible;
and (c) individual attacks are a sufficiently simple class
to be readily understood by researchers working on prac-
tical implementations, and their complete understanding
helps dissipating that aura of phenomenologicality which
is sometimes associated to security bounds in actual QKD
protocols (as if a security bound, which is a purely mathe-
matical statement and not an observable, could be subject
to experimental investigation).

Recently, Kim et al. [11] have claimed to physically
implement “the most powerful individual-photon attack”,
therefore putting the BB84 protocol’s security “to the
test” [12]. Following their suggestion that “the physical
simulation allows investigation of the fundamental secu-
rity limit of the BB84 protocol against eavesdropping in
the presence of realistic physical errors, and it affords the
opportunity to study the effectiveness of error correction
and privacy amplification when the BB84 protocol is at-
tacked”, in this article this particular attack [13,14] (from
now on, the Slutsky-Brandt attack, (SB)1) is analysed in
the context of a complete and efficient QKD protocol.

For individual eavesdropping attacks, and using an ap-
propriate reconciliation protocol which does not correlate
signals, upper bounds on Eve’s information can be esti-
mated via the average collision probability of the sifted
key. A security bound as a function of the disturbance has
been derived by Lütkenhaus [15] in both scenarios when
faulty bits are discarded or corrected, by modelling Eve’s
individual attacks by means of positive-operator-valued
measurements (POVM). In Sections 2 and 3 the SB attack
is analysed, and it is highlighted that this attack yields the
upper value of τ(e), the discarded fraction in the privacy
amplification stage, obtained by Lütkenhaus when faulty
bits are rejected, therefore conferring Lütkenhaus bound
the property of being sharp, as already pointed out by this
author.

However, the BB84 dialect that is nowadays most com-
monly adopted implements the reconciliation step through
error correction (instead of error discard), because this
leads to a larger final secret key, as shown in Section 4.
During this procedure, assumed perfect for simplicity, an
amount h(e) of information per sifted bit (the Shannon
limit [16]) is leaked to Eve and must be discarded. In Sec-
tion 5, it is shown that for such protocol the SB attack is
not necessarily optimal, and in no way threatens the upper

1 It is to be remarked that, despite the name of Slutsky being
used for this attack in literature, the authors of [13] have never
overclaimed its optimality.

R
apide N

ot

H
ig

hl
ig

ht
 P

ap
er



I.M. Herbauts et al.: On the optimality of BB84 individual entangling-probe attacks 397

bound on τ(e) as derived by Lütkenhaus for individual at-
tacks on QKD protocols with error correction [15].

Finally, in Section 6.1, it is proven that there exist
a stronger entangling-probe attack, and that this attack
leads to a discarded fraction that coincides exactly with
Lütkenhaus upper bound, thus abrogating the regime of
hope for individual attacks against an ideal BB84 protocol
with encrypted error correction subsisting thus far.

The mathematical techniques used in this article are
similar to those developed by [17,18] and perfected in [13],
but an important extension is introduced in Section 2.3
which allows for a significant simplification of the problem.
The final result suggests an intriguing relation between
the maximal collision probability achievable through an
optimal measurement and the fidelity of the (mixed) states
to be distinguished.

2 Modelling of individual attacks and security
bounds

In general, a security proof for a given class of attacks
is made out of three main ingredients. First, one needs
a mathematical description (a parametrization) of all ele-
ments of the class. Then, one must estimate how danger-
ous each element is with respect to the final goal of es-
tablishing a secret key shared by Alice and Bob; this very
much relies on the definition of security, and usually takes
the form of non-tight bounds. Last, an optimisation is to
be performed in the parametrized attack space in order to
bound the power of the most threatening element for each
value of the disturbance parameter (e.g., the QBER). The
first two steps in the case of ideal individual attacks, ac-
cording to the approach of Slutsky et al. [13], are reviewed
in this section.

2.1 The entangling-probe model

In 1996 Fuchs and Peres, and Fuchs et al. [17,18] intro-
duced the following individual-attack model. Eve prepares
a probe and lets it interact with the signal system sent
by Alice; the joint unitary evolution leaves the two sys-
tems in an entangled quantum state. The signal is then
forwarded to Bob, while the probe is stored by Eve and
measured after the reconciliation stage. Entanglement be-
tween the system and the probe “induces” a correlation
between Eve’s and Bob’s measurements, allowing Eve to
obtain partial information on the key. This model is known
as Fuchs-Peres’ entangling-probe (FPEP) attack.

The definition of individual attack does not prevent
Eve from forwarding to Bob a system with a different
Hilbert space from the original one, a case not covered by
the FPEP model2. It has however been shown [15,19,20]
that, if Bob’s apparatus can, to some extent, reveal the
presence of multiple systems in the signal, by adding a

2 For instance, if the signal system is a photon and the chan-
nel is an optical fibre, Eve could inject additional photons in
the fibre to fool Bob’s detectors.

sufficiently large penalty to the QBER in case of multi-
ple detections it is always possible to render these attacks
non-optimal for Eve3.

That the FPEP model indeed covers the full class of
individual attacks (at least among attacks where Eve is
forced to measure its system at some point) is a conse-
quence of Stinespring’s dilation theorem [21], that guar-
antees that every completely positive and trace-preserving
map can be built by embedding the input state space in
the state space of a “larger” system, which is then unitar-
ily evolved and subsequently traced down to a subsystem
isomorphic to the output space. Therefore, any quantum
channel can be regarded as arising from a unitary evolu-
tion on a larger (dilated) system. Embedding in a larger
space can be thought of as tensoring with an auxiliary
system (the probe) in a fixed initial state, because this
provides an intuitive physical model. The initial state can
moreover be assumed to be pure4. Stinespring’s theorem
is a generalisation of Neumark’s theorem [22], that shows
that every generalized measurement on a system can be
implemented by letting the system interact unitarily with
an ancilla, and then projectively measuring the latter5.

The explicit FPEP parametrization for the BB84 pro-
tocol will now be introduced, following the notation of [13]
as closely as possible. In BB84, Alice randomly chooses a
basis from a pair {|u〉, |ū〉} and {|v〉, |v̄〉} of mutually unbi-
ased orthogonal bases, and a signal bit, and sends to Bob
the first element of the basis if the chosen bit is 0, the sec-
ond element otherwise. Bob, similarly, chooses, randomly
and independently from Alice, one of the two bases, and
performs a von Neumann measurement to determine the
bit. The sifted key is built from those exchanges where the
measurements were compatible, i.e., when both Alice and
Bob chose the same basis.

If U is the unitary joint evolution of the FPEP attack,
and |w〉 is the initial pure state of the probe, the overall
entangled state after interaction can be decomposed as

U |a〉|w〉 = |a〉|ψaa〉+ |ā〉|ψaā〉, (1)

where a ∈ {u, ū, v, v̄}, and |ā〉 is the state correspond-
ing to the complementary bit (the states |ψab〉 are neither
orthogonal nor normalized). When the input state |a〉 is
sent by Alice, every outcome b of Bob is therefore asso-
ciated to an output state of the probe proportional to
|ψab〉. It is convenient [13,17] to define an orthonormal
basis {|e0〉, |e1〉}, oriented symmetrically with respect to

3 In practice, it is sufficient to insert a random bit in the
sifted string for each multiple detection instead of neglecting
that detection.

4 The ability to purify each mixed state into a pure state of a
larger system is again a consequence of Stinespring’s theorem.

5 In reality, the theorem asserts that a general measurements
with n′ possible outcomes on an n-dimensional system, with
n′ > n, can always be seen as a projective measurement on an
enlarged space with n′ dimensions which embeds the original
state space. But the version with the measurement only on the
auxiliary system is easier to visualize.
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the signal states, which can then be expressed as

|u〉 = + cosα |e0〉+ sinα |e1〉, (2a)
|ū〉 = − sinα |e0〉+ cosα |e1〉, (2b)
|v〉 = + sinα |e0〉+ cosα |e1〉, (2c)
|v̄〉 = + cosα |e0〉 − sinα |e1〉, (2d)

where α = π/8, because the bases are unbiased. Since |e0〉
and |e1〉 generate the signal space, the action of a generic
FPEP attack is then fully described by the action of U on
them; similarly to equation (1), one defines

U |em〉|w〉 = |e0〉|Φm0〉+ |e1〉|Φm1〉. (3)

As for the |ψab〉’s, the four states |Φmn〉 are generally nei-
ther normalized nor orthogonal; their number shows that
the probe space corresponding to a two-level signal is ef-
fectively four-dimensional.

2.2 Attack-space refinement via symmetrization

The aforementioned space of attacks is by far too compli-
cated to be completely explored. However, standard tech-
niques based on symmetrization are available to reduce its
size without loosing potential optimal elements. The gen-
eral idea is trivial: if a subset of the space is known where
all attacks are equivalent, it is sufficient to retain only
one representant of the subset during the search. What is
less trivial is how to characterize and find equivalent ele-
ments. In the picture of the entangling-probe, all measur-
able quantities are determined by the joint state χ of the
signal and probe after interaction. If ρa ∈ {ρu, ρū, ρv, ρv̄}
is a signal state and ω = |w〉〈w| is the initial probe state,
then

χ(ρa, ω, U) = Uρa ⊗ ω U †. (4)

The effects of an attack (U, ω), both in terms of the QBER
and Eve’s maximum inference power, are summarized by
the statistical distribution of the χ’s, which depends on
the signal a priori distribution pa, that is

(U, ω)←→ { pa; χ(ρa, ω, U) }a=u,ū,v,v̄. (5)

Since, for BB84, the a priori probabilities pa = 1/4 are
the same, attacks to the protocol have equivalent effects if
the rays of the states are permuted (without violating the
constraint that the two bases are unbiased). Readers not
interested in technicalities may now just retain that the
simplification of the search space implies that the vectors
|ψ〉 of equation (1) can be parametrized with only two real
parameters, and jump to equations (22) in Section 2.3.

All ray permutations can be generated with only two
involutions, for instance (1) the basis exchange and (2) the
bit exchange in the second basis; these two specific sym-
metries are called in the following respectively R1 and R2.
However, the approach is more general, and can be ex-
tended to other cases, for example to the six-state variant
of BB84 [23].

Fig. 1. (Color online) A graphical representation of the or-
bit Ug∈[1...8] generated by applying the symmetry group of the
BB84 protocol to a generic attack U . The whole orbit can be
explored using only the involutions R1 (basis-exchange) and

R2 (bit-exchange). The attack ˜U is the average of the elements
on the orbit, operates on an enlarged probe space and is sym-
metric under the BB84 group. The search for optimal elements
can be restricted to these symmetric attacks.

Let Qi = Ri ⊗ I be a local operator on the joint
space of the signal and the probe6; if Alice changes her
signal convention from ρa into RiρaR

†
i , and the final den-

sity matrix χ(RiρaR
†
i , ω, U) is transformed back in Bob’s

laboratory into Q†
iχQi, both the QBER and Eve’s max-

imum inference power, which are average quantities, are
statistically unchanged. It follows, very much in analogy
to the passive-active picture of a reference-frame change,
that the attacks (U, ω) and (Q†

iUQi, ω) are equivalent. In
mathematical terms

χ(ρ, ω, U) ≡ Q†
iχ(RiρR

†
i , ω, U)Qi

= (Q†
iUQi)ρ⊗ ω (Q†

iUQi)† = χ(ρ, ω,Q†
iUQi). (6)

Therefore, there is a direct link between a representation
of the group G of symmetries of the protocol and attack
equivalence, and this remark can be exploited in a useful
way. Below we consider the case of finiteG, which is proper
to the BB84 protocol. Since R1 and R2 generate the whole
representation, by repeated application of equation (6) it
can be shown that, for all Rg, the attack Ug = Q†

gUQg is
equivalent to U = U0 (ω is omitted here, since it is always
the same, and Qg∈G = Rg ⊗ I). For BB84, the relevant
group G is D4 ([24], Chap. XII, Tab. 7); the action of the
representation is illustrated in Figure 1. The order of the
group is 8, so that the orbit of U has at most 8 elements.

Intuitively, a random application by Eve of attacks
Ug will give another equivalent attack. The idea can be

6 A local operator can be implemented without communica-
tion by Eve and Bob in their laboratories. Note that one could
also define Qi = Ri ⊗ R′

i with a generic unitary transforma-
tion R′

i in Eve’s space, since every such transformation could
be undone by Eve during her optimal measurement; but this
degree of freedom does not bring additional constraints and is
thus ignored here.
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formalized by extending the probe space with an auxil-
iary space with |G| dimensions. Define

˜U =
∑

g Ug ⊗ Pg and ω̃ = ω ⊗ Ω, (7)

where Pg = |g〉〈g| are orthogonal projectors in the
auxiliary space, and Ω = |G|−1

∑

gg′ |g〉〈g′| is the density
matrix of a pure state with Tr(PgΩ) = 1/|G|. The connec-
tion with the intuitive idea is that the projectors in the
auxiliary space randomly select the Ug’s; the construction
of (˜U, ω̃) is represented in Figure 1.

What is special about the “average” attack (˜U, ω̃) built
in this way is that it is invariant under a group, which can
be built from the representation of G and some permuta-
tion operators Xg on the auxiliary space. Let

˜Rg
def= Q†

g ⊗Xg = R†
g ⊗ I⊗Xg

def= R†
g ⊗ ̂Rg. (8)

Operators Xg are chosen such that if Q†
gU�Qg = Uπg(�)

then XgP�X
†
g = Pπg(�). This is always possible due to

the fundamental theorem [24, Chap. XII], that any finite
group of order k is isomorphic to a subgroup of the general
symmetric group of all permutations of k elements, S(k),
which in turn can be naturally represented by the set of
all k × k permutation matrices. It is then sufficient to fix
one isomorphism and chose Xg as the isomorphic image of
Q†

g; in this way Xg|
〉 = |πg(
)〉. It is now a trivial matter
to verify that

˜Rg
˜U ˜R†

g =
∑

�Q
†
gU�Qg ⊗XgP�X

†
g = ˜U (9)

and ̂Rgω̃ ̂R†
g = ω ⊗XgΩX

†
g = ω̃. (10)

One can therefore conclude that, given a group G of
protocol symmetries, for each attack (U, ω) there exists
an equivalent attack (˜U, ω̃) which is invariant under all
˜Rg’s as defined in equation (8). It follows that the sub-
set containing all attacks invariant under such symme-
tries contains at least one optimal element; the search
for optimality can thus be restricted to that subset. This
finding is directly relevant to the FPEP parametrization,
because it generates constraints for the |Φmn〉’s of equa-
tion (3). In fact, for invariant attacks, replacing U with
(R†

g ⊗ ̂Rg)U(R†
g ⊗ ̂Rg)† and |ω〉 with ̂Rg|ω〉 shows that

URg|em〉|ω〉 =
∑

n

Rg|en〉 ̂R†
g|Φmn〉, (11)

from which, for each symmetry Rg, the value of ̂R†
g|Φmn〉

can be calculated and used in constraints of the form

〈Φmn|Φpq〉 = 〈Φmn| ̂Rg
̂R†

g|Φpq〉. (12)

This formula is clearly valid for all g ∈ G, but in prac-
tice it is sufficient to restrict its application to ̂R1 and ̂R2.
Also, it is more convenient to work with the symmetries
of the state vectors |a〉 instead of those of the correspond-
ing rays. This gives a representation of D8 instead of D4,
where redundant elements are included (like |a〉 → −|a〉,
which is physically indistinguishable from the identity);
the generated constraints are however the same.

2.3 The entangling-probe parametrization

The authors of the FPEP model remarked that the BB84
protocol, as described above, is endowed with the basis-
exchange symmetries R1 (an involution corresponding
to |e0〉 ↔ |e1〉). Then, using essentially the same tech-
niques described in Section 2.2, namely equation (12),
they showed that an attack-dependent orthonormal basis
{|wi〉}i∈0...3 can be found7 such that

|Φ00〉 = X0|w0〉+X1|w1〉+X2|w2〉+X3|w3〉, (13a)
|Φ01〉 = X5|w1〉+X6|w2〉, (13b)
|Φ10〉 = X6|w1〉+X5|w2〉, (13c)
|Φ11〉 = X3|w0〉+X2|w1〉+X1|w2〉+X0|w3〉. (13d)

With analogous considerations extended to anti-unitary
symmetries (complex conjugation in the probe space)
they also showed that all coefficients X are real num-
bers. Note that this parametrization satisfies 〈Φmn|Φpq〉 =
〈Φm̄n̄|Φp̄q̄〉 = 〈Φpq|Φmn〉, given by the constraints of ̂R1 (as
previously, the bar indicates the complementary bit). The
X ’s are correlated by the fact that U must be a unitary
operator, hence the additional constraints

1 =
∑

i=0,1,2,3,5,6X
2
i = ‖Φ00‖2 + ‖Φ01‖2, (14a)

0 = X1X6 +X2X5 = 〈Φ00|Φ10〉 = 〈Φ11|Φ01〉; (14b)

this shows that each FPEP attack, prior to Eve’s mea-
surement, can be described by only four real parameters.

However, as already said, there exists another symme-
try in the BB84 protocol which has not been exploited
by the authors of [13], namely R2, the bit-exchange sym-
metry in one basis only. This corresponds to swapping
the convention for 0 and 1 in one basis while leaving the
other convention unchanged. The bit-exchange symmetry
is generated by a Hadamard transformation:

[ |e0〉
|e1〉

]

−→
(

1 1
1 −1

) [ |e0〉
|e1〉

]

. (15)

It is easy to check that |v〉 ↔ |v̄〉, while |u〉 and |ū〉 are
invariant (actually, |ū〉 has its sign flipped, but this does
not matter, since the physical state is the same). Using
R2|ej〉 = [|e0〉+ (−1)j |e1〉]/

√
2, after some elementary al-

gebraic passages, using equation (11), one obtains

̂R2|Φ00〉 = 1
2 (|Φ00〉+ |Φ01〉+ |Φ10〉+ |Φ11〉) , (16a)

̂R2|Φ01〉 = 1
2 (|Φ00〉 − |Φ01〉+ |Φ10〉 − |Φ11〉) , (16b)

̂R2|Φ10〉 = 1
2 (|Φ00〉+ |Φ01〉 − |Φ10〉 − |Φ11〉) , (16c)

̂R2|Φ11〉 = 1
2 (|Φ00〉 − |Φ01〉 − |Φ10〉+ |Φ11〉) . (16d)

Equation (12) shows how to use these relations to cal-
culate additional constraints for 〈Φmn|Φpq〉 products. Of
course, not all combinations of indexes are interesting, be-
cause quite a few are already fixed by other symmetries

7 The absence of coefficient X4 is due to backward compati-
bility.
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and the unitarity of U . As already seen, there are at most
four “independent” products, e.g., 〈Φ00|Φ01〉, 〈Φ01|Φ01〉,
〈Φ00|Φ11〉, and 〈Φ01|Φ10〉. The most important constraint
is obtained by calculating the first one,

〈Φ00|Φ01〉 = 〈Φ00| ̂R2
̂R†

2|Φ01〉 = X1X5 +X2X6 = 0. (17)

Together with equation (14b), this relation proves a fun-
damental property of the probe space for optimal attacks,
i.e., this space is the direct sum of two orthogonal sub-
spaces, one corresponding to bits received correctly by Bob
and the other to errors in the sifted key,

Span {|Φ00〉, |Φ11〉} ⊥ Span {|Φ01〉, |Φ10〉} . (18)

The symmetries analysed so far have also led to the con-
clusion that, within each subspace, basis vectors have the
same length, ‖Φ00‖=‖Φ11‖ and ‖Φ01‖=‖Φ10‖, and these
lengths are related by ‖Φ00‖2 + ‖Φ01‖ = 1. To determine
the full geometry of the probe one therefore only needs to
parametrize the intra-space products.

Applying equations (16) to the other three products,
namely 〈Φ01|Φ01〉, 〈Φ00|Φ11〉, and 〈Φ01|Φ10〉 (whose calcu-
lation is greatly simplified by the previous orthogonality
conditions), one obtains the desired final constraint,

〈Φ01|Φ10〉+ 〈Φ00|Φ11〉 = 1− 2‖Φ01‖2. (19)

It follows the probe space can now be parametrized with
only two real parameters, the length ‖Φ01‖ and one of
the two inter-space products. In order to optimize Eve’s
measurement, it is handier to translate these constraints
in terms of the vectors |ψ〉. Using Definitions (1, 2, 3), and
solving for the |ψ〉’s, one finds

|ψuu〉 = cos2α|Φ00〉 + sin2α|Φ11〉 + sinα cosα(|Φ10〉 + |Φ01〉),
|ψuū〉 = cos2α|Φ01〉 − sin2α|Φ10〉 + sinα cosα(|Φ11〉 − |Φ00〉),
|ψūu〉 = cos2α|Φ10〉 − sin2α|Φ01〉 + sinα cosα(|Φ11〉 − |Φ00〉),
|ψūū〉 = cos2α|Φ11〉 + sin2α|Φ00〉 − sinα cosα(|Φ10〉 + |Φ01〉),

and similar relations for signals v and v̄, which, due to the
perfect symmetry of the bases, are not relevant here. Triv-
ial but lengthy calculations show that the correspondence
between the |ψ〉’s and the |Φ〉’s is unitary (although not
so easy to spot, since both vectors sets are not orthogonal
and not normalized), and therefore all vector products are
preserved.

Since attack optimisation is performed at constant
QBER, it is better to have e as a free variable; this is
easily achieved with the following reasoning. The value of
the QBER cannot be changed by a local measurement by
Eve after the signal-probe interaction is terminated, and,
by definition, does not depend on the reconciliation pro-
cedure. From equation (1) it is immediate to understand
that, if signal |a〉 is sent by Alice, an error shows up at
Bob’s site with probability 〈ψaā|ψaā〉. Considering that all
signals have the same a priori probability of 1/4, and that
the parametrization, by construction, satisfies the basis-
exchange symmetry, one concludes that

e = 1
4

∑

a=u,ū,v,v̄

〈ψaā|ψaā〉 = 1
2

∑

a=u,ū

〈ψaā|ψaā〉 = ‖ψ01‖2. (21)

Therefore, the vectors of the “error set”, |ψ01〉 and |ψ10〉
have length equal to

√
e, and the vectors of the “good set”,

|ψ00〉 and |ψ11〉, have length equal to
√

1− e; moreover,
the inter-space products, 〈ψ00|ψ11〉 and 〈ψ01|ψ10〉, sum up
to 1 − 2e. By introducing the inter-space imbalance δ,
all these relations can be summarized as in the following
table:

Span {|ψuu〉, |ψūū〉} ⊥ Span {|ψuū〉, |ψūu〉} , (22a)

‖ψuu‖2 = ‖ψūū‖2 = 1− e, (22b)

‖ψuū‖2 = ‖ψūu‖2 = e, (22c)

〈ψuu|ψūū〉 = 1
2 − e− δ, (22d)

〈ψuū|ψūu〉 = 1
2 − e+ δ. (22e)

The imbalance is also limited by the geometrical con-
straint of scalar products, i.e., Schwartz inequality.

The allowed values for (e, δ),

− 1
2 ≤ δ ≤ + 1

2 − |1− 2e|, (23)

determined by

|12 − e− δ| ≤ 1− e, (24a)

| 12 − e+ δ| ≤ e, (24b)

are represented on the left.
In the following of the article the set of equations (22) is
used, still under the name of FPEP parametrization.

2.4 Estimation of Eve’s inference power
and the discarded fraction

As already explained in the introduction, after key recon-
ciliation a procedure called privacy amplification is ap-
plied to reduce Eve’s knowledge to negligible amount
(assuming Eve is forced to measure at this point). Pri-
vacy amplification employs universal2 hashing functions
to compress the reconciled key, of length n̄, to a final key,
of length r. The discarded fraction τ is then defined as

τ =
n̄− r
n̄

. (25)

The theory of privacy amplification was developed in a
seminal article by Bennett et al. [8], who found a condi-
tion for strong security. Lütkenhaus [25] used it to bound
Eve’s average8 Shannon information on the final key: for
individual attacks, the eavesdropper, on average, knows
less than 1/ ln 2 bits of the final key provided

τ(e) ≥ 1 + log2〈P 1
c 〉, (26)

where 〈P 1
c 〉 is the maximum average collision probability

of Eve’s knowledge of one bit of the reconciled key, for a

8 Therefore, QKD security proofs from this period adopted
average strong security instead of proper strong security, as
defined in [8].
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fixed value of the disturbance, the QBER e. Note that,
under conservative assumptions, all noise on the quantum
channel may be attributed to Eve, but it does not have
to; therefore, τ(e) must be a non decreasing function. If,
for instance, τ(e′ > e) < τ(e), then Eve could perform the
attack causing error e, and then pass Bob’s signal through
a depolarazing channel with error e′− e. Therefore, in the
following, all τ ’s are to be considered as monotonicized.
If S is the random variable corresponding to the bit sent
by Alice, with values s = 0, 1, and M is the random vari-
able corresponding to all knowledge acquired by Eve, with
values m, the 〈P 1

c 〉 is defined as

〈P 1
c 〉 =

∑

m

P (M = m)
∑

s

P 2(S = s|M = m). (27)

However, when the approach of [13] is followed, it is not
necessary to calculate the conditional probabilities P (S =
s|M = m) nor the marginal probabilities P (M = m), be-
cause the largest possible value of 〈P 1

c 〉 can be obtained
by direct inspection of the state of Eve’s probe after in-
teraction, as shown in Section 3.

3 Discarded fraction for individual attacks
against a protocol using “faulty bits
dumping” as reconciliation method

In Section 2.3 it was shown that the QBER e is completely
determined by the signal-probe interaction during trans-
mission. This is not the case for Eve’s inference power,
which depends also on the reconciliation method. Slutsky
et al. [13], followed by [11,12,14], considered only the case
when all errors are discarded from the sifted key. An eval-
uation of the cost of this procedure is postponed to Sec-
tion 4; for the time being it will be assumed that it can
be performed without giving Eve any piece of information
other than the indexes of the retained bits.

Of course, it is very relevant to Eve that reconcilia-
tion is performed through error discard; in fact, her state
of knowledge on the signal-probe system conditioned on
Alice sending state |a〉 changes from that in equation (1)
to a pure state, just as if Bob measurement had collapsed
the signal state into |a〉,

U |a〉|w〉 = |a〉|ψaa〉+ |ā〉|ψaā〉 “collapse”−−−−−−→ |a〉|ψaa〉. (28)

If, for instance, the encoding basis was {|u〉, |ū〉}, Eve’s
probe, in Eve’s view, would be in an equiprobable mixture
of |ψuu〉 and |ψūū〉. In this case, intuitively, the largest in-
ference power is given by a measurement that maximizes
the probability to tell the first case apart from the sec-
ond. It is known [26,27] that optimal ambiguous discrim-
ination (corresponding to a minimum of the probability
Perr of making a wrong guess) can be achieved by means
of projective measurements. For two pure and normalized
states, |φ0〉 and |φ1〉, assuming, without lack of generality
that 〈φ0|φ1〉 ∈ R, and defining the pure-state fidelity as,

f = |〈φ0|φ1〉|2, (29)

the optimal von Neumann measurement is defined by the
directions |χ0/1〉 = θ0/1|φ0〉+ θ1/0|φ1〉, where

θ0/1 =

√

1−√f ±
√

1 +
√
f

2
√

1− f , (30)

and the minimum error probability turns out to be Perr =
1
2 [1 − √1− f ]. Building on a result of Levitin [28,29],
the authors of [13] showed9 that this measurement also
maximizes the average collision probability and the drop
in Shannon and Rényi entropy, confirming the intuition.
The maximum collision probability turns out to be

〈P 1
c 〉 = 1− 1

2f. (31)

Therefore, in the FPEP approach, the problem of optimiz-
ing Eve’s measurement is really trivial. The optimal attack
is that which minimizes the value of f for a fixed value of
e. Due to the intrinsic basis symmetry of the method, the
value of the fidelity does not depend on the basis10. Using
equations (22b) and (22d) one then easily finds

√

f =
|〈ψuu|ψūū〉|
‖ψuu‖ · ‖ψūū‖ =

|12 − e− δ|
1− e , (32)

which is minimised at fixed e ≤ 1/3 by δ = 2e− 1/2 (see
the allowed range for δ in Eq. (23)), yielding:

min
z
|e

√

f =
1− 3e
1− e (e ≤ 1/3) (33)

(if e > 1/3, then, with δ = 1/2− e, the fidelity is exactly
zero, i.e., the two cases are perfectly distinguishable). Sub-
stituting this result in equation (31), and then into equa-
tion (26) finally gives the maximum value of the discarded
fraction (implicit in [13], and explicitly given in [12]),

τ(e) = 1 + log2〈P 1
c 〉 = log2(2− f) (34)

= log2

1 + 2e− 7e2

(1− e)2 = log2[1 + 4e− 4e3 +O(e4)].

This formula is valid up to e = 1/3, where the function
reaches its maximum value, τ(1/3) = 1, after which Eve
enjoys complete knowledge of the key established by Alice
and Bob (see also the discussion of Sect. 2.4).

3.1 The Slutsky-Brandt attack

Kim et al. [11], following a proposal by Brandt [14], exper-
imentally simulate a particular eavesdropping attack, the
Slutsky-Brandt (SB) attack, that is a specific case of the
general FPEP class previously described. Their practical

9 Actually, the authors of [13] where interested only in
Shannon and Rényi entropy; the result for the collision proba-
bility is implicit in the inequality for cos2 2ζ at the bottom of
the first column of page 2393.
10 Note that, since the encoding basis is known at measure-
ment time, Eve can set up different and independent measure-
ments for the two cases.
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implementation uses a CNOT gate as entangling oper-
ation, and error-discard as reconciliation procedure. This
attack can be shown to attain the maximum collision prob-
ability, as given by equation (34), and is therefore optimal
within its class.

The SB attack is now shortly recalled. Eve employs a
probe system with the same dimensionality of the signal (a
qubit), and the entangling CNOT gate uses the signal as
control and the probe as target. The computational basis
of the CNOT is the same “symmetric” basis {|e0〉, |e1〉}
of equations (2); with some abuse of notation, the same
symbols |e0〉 and |e1〉 are used to indicate an arbitrary
basis in Eve’s space. The initial probe state is

|w〉 = 1√
2

[

(C + S)|e0〉+ (C − S)|e1〉
]

, (35)

where the parameters S and C are sine and cosine of some
angle, function of the desired QBER e ≤ 1/2:

S =
√

2e, C =
√

1− 2e. (36)

The total system, upon Eve’s action, becomes entangled,
and its state can be decomposed according to the defini-
tion of equation (1), giving

|ψuu
ūū
〉 = C

|e0〉+ |e1〉√
2

± 1√
2
S
|e0〉 − |e1〉√

2
, (37)

|ψuū
ūu
〉 = |Te〉 def=

1√
2
S
|e1〉 − |e0〉√

2
. (38)

Similar equations hold in the other basis. The probability
of having an error is, as expected, 〈Te|Te〉 = S2/2 = e.
“Error states”, that is the states |ψaā〉, are characterized
by independence from the actual signal a, as they are al-
ways equal to |Te〉. As a consequence of this, when an error
takes place, Eve has no information at all on the trans-
mitted bit – the entangling unitary is in fact optimized for
protocols which discard errors instead of correcting them.

The inference power of the SB attack can be calcu-
lated, as already seen, from the fidelity of |ψuu〉 with re-
spect to |ψūū〉; for e ≤ 1/3, it is identical to that of equa-
tion (33), which proves that this attack is optimal in the
class of attacks on protocols which discard errors of the
sifted key:

√

f =
|〈ψuu|ψūū〉|
‖ψuu‖ ‖ψūū‖ =

|2C2 − S2|
2C2 + S2

=
|1− 3e|
1− e . (39)

4 Reconciliation: error discard versus error
correction

As emphasized earlier, a QKD protocol, like BB84, can
be implemented in many variants, by adopting different
approaches for reconciliation. Each of these dialects is a
protocol on its own, and trivially comparing the discarded
fraction for different protocols makes as much sense as

comparing apples with pears. However, a common bench-
mark can be found in the length of the final secret with
respect to the length n of the sifted key (not the length n̄
of the reconciled key).

The problem is further complicated by the fact that
the privacy-amplification bound is based on the average
collision probability of the sifted and reconciled key. If
reconciliation is performed in clear, by exchanging pub-
lic messages on the classical channel, 〈P 1

c 〉 of the sifted
key is modified in ways that are very difficult to account
for. For this reason, it is established practice to exchange
reconciliation information in encrypted form, with a one-
time pad. This, of course, requires a previous secret to be
shared by Alice and Bob; this secret is consumed during
the execution of the protocol, and must enter the final bal-
ance of secret key production. The alternative approach
of exchanging public messages and then reducing the final
key of an equivalent amount has never been proven to be
more efficient, but it is more difficult to justify theoreti-
cally (see, e.g., [30]).

Articles on BB84 with error discard usually do not
mention an explicit procedure for discarding faulty bits;
but it is clear that locating all errors in the sifted key
is exactly as difficult as correcting the string altogether
(since the output of one procedure can be directly used
to implement the other one), which implies a minimum
cost nh(e), where h is the binary entropy function h(e) =
−elog2e−(1−e)log2(1−e), due to the Shannon limit [16].
The secret gain is therefore at most

Gd = n(1− e)(1 − τd(e))− nh(e), (40)

because (1) the sifted key of length n is reduced to a rec-
onciled key of length n̄ = n(1 − e) by discarding the ne
errors, (2) the reconciled key is compressed by a factor
1 − τd during privacy amplification, and (3) the cost of
tight error discard, nh(e), must be subtracted from the
final balance. The subscript d of τ is meant to remember
that this is the discarded fraction in case of reconciliation
through error discard. This gain can be directly compared
with that of protocols with error correction. In the latter
case, n̄ = n (no bits are discarded), and τ becomes τc:

Gc = n(1− τc(e))− nh(e). (41)

Obviously, 0 ≤ τc ≤ τd ≤ 1, because more information is
available to Eve with error discard than with error correc-
tion (i.e., the location of all bits received as errors, and the
fact that all retained bits were received without errors).
One can consider also a case in which errors are corrected,
but the positions of the corrected spots is leaked to Eve11;
the previous considerations are not invalidated. It is im-
mediate to see that error correction is always better than
error discard, because

Gc −Gd

n
= (1− e)(τd − τc) + e(1− τc) ≥ 0. (42)

11 The case of “leaked errors” is considered because it simpli-
fies a lot of calculations, and is anyway an upper bound to the
case of perfectly encrypted error correction.
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Therefore, it makes sense to see what happens to
the “optimal BB84 attack” when reconciliation is done
through error correction, a case analysed in Section 5.
One may legitimately think that other reconciliation pro-
cedures could lead to an even larger gain; for instance, an
algorithm could select an error-free part of the sifted string
of length n̄ by exchanging a message shorter than n̄h(e),
as long as n̄ < n. The overall secret gain is most proba-
bly not larger than Gc, but this statement has never been
formally proved. Other variants might be explored, like
reconciling Alice’s key to the sifted key of Bob, instead of
the opposite, or changing both to a third common string,
or merging reconciliation and privacy amplification into
a single step, or even replacing standard privacy amplifi-
cation with some other procedure in order to get closer
to the I(A : B) − I(A : E) bound. However, one should
also remember that QKD proofs are not after finding the
“optimal” protocol, but after proving that a given, proba-
bly sub-optimal but reasonably efficient protocol is secure
under some conditions.

Changing the focus from one protocol to another is
moreover often not a good idea because QKD proofs are
a lengthy and expensive collective effort, which must be
to some extent restarted when the protocol is changed.
And all this, not to speak of the apparent impossibility to
parametrize the space of “all possible QKD protocols”. For
QKD protocols, standardization is more important than
optimisation.

5 The Slutsky-Brandt attack
with an error-correction procedure

The SB attack will now be analysed in the context of
a BB84 protocol using encrypted error correction, in or-
der to investigate its claimed optimality. Because of this
choice for reconciliation, the amount of information leaked
to Eve during the raw exchange plus the knowledge of the
encoding basis is all what concerns the calculation of the
average collision probability. Since only individual attacks
are allowed, one can consider Eve’s activity as being per-
formed on two separate strings of n(1−e) correct bits and
ne faulty bits respectively. The discarded fraction can thus
be written as

τ(e) = (1− e)τ= + eτ�=, (43)

where the first term is related to correct bits and the sec-
ond one to faulty bits; this expression is equivalent to

τ(e) = 1 + log2

(〈P 1
c=〉1−e〈P 1

c �=〉e
)

, (44)

where 〈P 1
c=〉 and 〈P 1

c �=〉 are the individual average collision
probabilities for error-free and faulty bits respectively. τ=
is obviously the same quantity determined in Section 2 for
the SB attack, see equation (34). To calculate the amount
of information leaked to Eve from erroneous bits, note
that when the bit measured by Bob is wrong, the state of
the probe collapses to |Te〉, equation (38), independently

Fig. 2. (Color online) The fraction of the sifted key that must
be discarded during privacy amplification in order to counter a
SB attack against a protocol with encrypted error correction,
equation (45), versus the QBER e compared with Lütkenhaus
bound ([15], Eq. (46)). The first curve reaches its maximum
at e ∼ 0.277, the bound at e = 0.5, where its value is 1. The
curves are non-decreasing, see the discussion in Section 2.4.

from the bit sent by Alice and the encoding basis. There-
fore, Eve has no mean to distinguish between Alice’s two
equiprobable bits, and consequently τ�= = 0. Using equa-
tions (43) and (34) one finds

τ(e) = (1− e) log2(1 + 4e− 4e3 +O(e4))

= log2

(

1 + 4e− 4e2 − 12e3 +O(e4)
)

. (45)

This discarded fraction can now be compared to the
general scenario of individual attacks considered by
Lütkenhaus in the momentous paper [15], where the au-
thor concludes that τ(e) is bounded by

τ(e) ≤ log2(1 + 4e− 4e2). (46)

In Figure 2, the discarded fraction necessary to counter
a SB attack is compared with Lütkenhaus bound (which
was not claimed to be tight). The latter is always higher,
hence stronger, than the security curve derived from the
SB attack, the two curves merging only at e = 0. For
small error rates, most bits are exchanged correctly and,
as the SB attack on correct bits is optimal, the curves
converge. When more errors are introduced, Eve’s lack of
information on faulty bits weakens her attack.

This shows that in a QKD protocol with encrypted er-
ror correction, the SB attack does not fill the known upper
bound, leaving potential room for stronger individual at-
tacks. The SB curve is however a lower bound, since the
eavesdropping strategy is given explicitly. In the next sec-
tion, the question will be investigated whether a stronger
FPEP attack can be found, by appropriately balancing
the amount of information Eve can gain from error-free
bits and from bits received incorrectly by Bob.

R
ap

id
e 

N
ot

e

H
ighlight Paper



404 The European Physical Journal D

6 An optimal attack against BB84 with error
correction

6.1 With leakage of error positions

This section revisits the FPEP class of attacks against a
BB84 QKD protocol where errors of the sifted key are cor-
rected; however, it is assumed that the positions of these
errors become known to the eavesdropper. This latter ap-
parently peculiar hypothesis is investigated also in [15],
where the author shows that, due to spoiling information,
this case can be used to draw an upper bound also for
more secure protocols where Eve has no information about
which bits were received incorrectly by Bob.

The approach to the security proof is very similar to
that presented in Section 3, the difference being, that
here, for a given, known encoding basis, Eve must distin-
guish between two pure states for bits received correctly,
and two different pure states for bits received incorrectly,
since there are two possibilities for the “collapse” of equa-
tion (28). For instance, if the basis is {|u〉, |ū〉} and the bit
was received incorrectly (which happened with probabil-
ity e), Eve must distinguish between |ψuū〉 and |ψūu〉; if
the bit was instead received correctly, the two states are,
as before, |ψuu〉 and |ψūū〉. The results for the second en-
coding basis are identical, due to the intrinsic symmetry
of the FPEP method. Equation (31) is thus changed into

〈P 1
c 〉 =

(

1− 1
2f[=]

)1−e (

1− 1
2f[ �=]

)e
, (47)

with f[=] and f[ �=] defined by the following expressions
(which are then simplified with Eqs. (22b, c, d, e)), where
the imbalance δ is constrained by equation (23):

√

f[=] =
|〈ψuu|ψūū〉|
‖ψuu‖ ‖ψūū‖ =

| 12 − e− δ|
1− e , (48a)

√

f[ �=] =
|〈ψuū|ψūu〉|
‖ψuū‖ ‖ψūu‖ =

| 12 − e+ δ|
e

. (48b)

In order to find the optimal attack, it is now sufficient to
maximize the collision probability in equation (47) over δ.
It is easier to visualize the optimisation problem through
the discarded fraction. In fact, note that

τ = (1− e)log2(2 − f[=]) + e log2(2− f[ �=])

≤ log2

[

(1− e)(2− f[=]) + e(2− f[ �=])
]

. (49)

Finding the maximum 2δ = −(1−2e)2 of the upper bound
is trivial since the argument is a second-degree polynomial
in δ. But, for this value of δ, the two fidelities are equal,
and therefore inequality (49) is filled, and the optimisation
problem is solved. One obtains

f[=] = f[ �=] = fmin(e) = (1− 2e)2, and (50)

τ(e) = log2 [2− fmin(e)] = log2(1 + 4e− 4e2), (51)

which is exactly Lütkenhaus bound of equation (46).
Whereas previously this upper bound allowed some mar-
gin for lower security bounds to be found, the present
optimisation proves it to be tight when error positions

are leaked12. Note that, due to the symmetry e ↔ 1 − e,
the discarded fraction cannot be a monotonous curve in
this case. Above e = 50%, Eve’s tactic for total knowl-
edge cannot be modelled by the unitary matrix of the
FPEP parametrization; an additional dissipative evolu-
tion on Bob’s bit is necessary.

6.2 Without leakage of error positions

The previous section considered the implementation of a
QKD protocol with error correction and leakage of the
positions of the errors, because that assumption makes
the mathematical derivation particularly simple. However,
more secure error-correcting protocols can be devised, in
which Eve has no access to this piece of information. This
section investigates whether a different bound is proper to
this instance.

With Eve’s assumed lack of knowledge on the error
positions, the final state of the probe after the entangling
evolution and the “collapse” at Bob’s site is the density
matrix σ = TrBob(χ), with χ being the joint state of the
probe and the signal. The state σ will be a statistical mix-
ture, over Bob’s possible outcomes; namely

σa = |ψaa〉〈ψaa|+ |ψaā〉〈ψaā|, (52)

when the input state |a〉 is sent by Alice; note that |ψaa〉
and |ψaā〉 are not normalized; if the normalized vectors
were used instead, the two addends would have a factor
1 − e and e respectively in front. Eve must distinguish
between the two density matrices ensuing from the two
equiprobable states |a〉 of Alice, with a ∈ {u, ū}.

Suppose that Eve implements the following measure-
ment strategy, on which there is, a priori, no claim
of optimality. First she performs a projective measure-
ment to separate the {|ψuu〉, |ψūū〉} subspace from the

12 From the derivations of Section 2.3, explicit optimal at-
tacks can be devised using the expressions for the unitary ma-
trix U given by the authors of the FPEP model [17]. Indeed,
these authors express the X’s in terms of only four real angles
{λ, µ, φ, θ} in the range [0, 2π]. The problem of finding an opti-
mal attack is solved by finding matrix elements X’s, satisfying
the conditions equations (17) and (19), and for which

2δ = −(1 − 2e)2 = −2X0X3 −X1X2 + 2X5X6.

Using the parameters used in [13], it follows from equa-
tions (14b) and (17) that the parameters a, b, c, d are further
constrained, so that c = 0, and a = d = 1 − 2e. The optimisa-
tion problem is therefore reduced to the simple task of finding
values of some angles {λ, µ, φ, θ} for which

b = sin2 λ sin 2µ+ cos2 λ sin 2φ = (1 − 2e)2,

given the conditions a = d and c = 0 on

a = sin2 λ sin 2µ+ cos2 λ cos 2θ sin 2φ,

d = sin2 λ+ cos2 λ cos 2θ,

and c = cos2 λ sin 2θ cos 2φ.
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{|ψuū〉, |ψūu〉} subspace (finding the first case with proba-
bility 1−e, and the second one with probability e, but this
is irrelevant); the separation is possible because the two
subspaces are orthogonal, as shown in Section 2.3. Then,
if the first outcome was found, she proceeds with the same
measurement of Section 6.1 for this case, achieving a min-
imum fidelity equal to f[=]; similarly, for the second case,
she achieves f[ �=]. Given that, for these two measurements,
both f[=] and f[ �=] have the same value fmin(e) = (1−2e)2,
the average 〈P 1

c 〉 turns out to be the same as for the case
of error correction with leakage of error positions.

Therefore, there exists a measurement strategy which
is ignorant of the positions of the errors and fills the bound
of equation (51). It is however obvious that all attack
strategies that can be implemented without this piece of
knowledge can be implemented also if it is available: in
other words, the set of allowed attacks without leakage
is strictly included in the set with leakage, and therefore,
the security bound for the current case cannot exceed the
security bound of Section 6.1. Thus, the explicit attack
just shown implies that the two bounds are the same, and
that the attack itself is optimal.

It is remarkable that, similarly to equation (31), also
in this case the maximum collision probability is linked to
the fidelity [31] of the conditional density matrices σu and
σū. The calculation is greatly simplified by the subspaces
{|ψuu〉, |ψūū〉} and {|ψuū〉, |ψūu〉} being orthogonal; using
equations (48) one obtains

f(σu, σū) = Tr2
√√

σu σū
√
σu =

[

(1− e)f 1
2
[=] + ef

1
2
[ �=]

]2

=
(

|1
2
− e− δ|+ |1

2
− e+ δ|

)2

= (1− 2e)2,

and therefore 〈P 1
c 〉 = 1 − 1

2f . This identity may be true
here only due to the large number of constraints dic-
tated by the symmetries of the BB84 protocol. However,
it would be interesting to know whether the result holds
more generally. This problem is somehow similar to that of
minimum error probability or accessible information. De-
spite intuition, it is known [29,32] that these two are not
equivalent for mixed states. It is likely that the maximiza-
tion of the collision probability is still a different problem.
Formally, the problem would read like this: provided a
flat bit S is transmitted through a quantum channel, en-
coded in non-orthogonal density matrices ρ0 and ρ1, what
is the maximum collision probability of the distribution of
S that can be reconstructed by the receiver by means of
quantum measurements?

7 Conclusions

It has been shown that no real “threat” to the security
of BB84 QKD protocols stems from recent developments
in implementing an entangling probe attack. Not only is
this attack (claimed to be the “most powerful individual
attack” [11,12]) not threatening the security bound de-
rived previously by Lütkenhaus [15], but it is also shown
to be sub-optimal in an efficient and complete QKD im-
plementation. The SB attack is only an optimal attack for

those specific types of QKD protocols in which the recon-
ciliation procedure is to somehow discard all faulty bits,
which is a less desirable scheme as it leads to a shorter
final shared key.

It should also be pointed out that experiments cannot
allow for the investigation of fundamental security limits,
as “security” is not an observable; they can only shed light
on the technological feasibility of specific eavesdropping
attacks.

In view of the previous considerations, the recent head-
line in Nature purporting that “quantum cryptography is
hacked” [33,34] as a result of the successful implementa-
tion of an SB attack is an unfortunate misunderstanding.
In fact, the researchers whose work is highlighted in the
news feature do not themselves make any such sensation-
alistic claim, even though they fail to mention existing
security proofs and do not comment on the consequences
their attack has on existing security bounds.

In this paper it has been shown that improved analysis
of FPEP attacks leads to finding explicit optimal attacks
for the case considered in [15], filling the bound intro-
duced there, which therefore turns out to be sharp. This
holds independently of whether error positions are leaked
to Eve. The analysis gives a simple recipe for devising
optimal individual attacks, the most powerful eavesdrop-
ping attacks that could be implemented with nowadays
technology. The complete statement is the following. An
ideal BB84 QKD exchange where the dimensionality of
the signal space is not changed and the imperfection of
the experimental apparatus consists at most in a noisy
and lossy channel, and for which reconciliation through
error correction is performed, followed by privacy ampli-
fication, is strongly secure on average against individual
attacks if and only if the discarded fraction τ(e) satisfies

τ(e) ≥ log2(1 + 4e− 4e2)

(where e is the QBER of the sifted key) both in the case
that the positions of errors come to be known to the eaves-
dropper, and in the case that they do not. A byproduct of
this analysis is the question whether the maximum colli-
sion probability in distinguishing two mixed density ma-
trices is always one minus one half of the fidelity of the
carrier states.
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